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602.MYELOID ONCOGENESIS: BASIC

Genomic Analyses Unveil the Pathogenesis and Inform on Therapeutic Targeting in KMT2A-PTD AML
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A partial tandem duplication (PTD) in the KMT2A gene is detected in approximately 5-10% of acute myeloid leukemia (AML)
and myelodysplastic syndrome (MDS). Previous studies revealed that HOX-genes are highly expressed in KMT2A-PTD AML
similar to KMT2A-rearranged or NPM1-mutated AML. While the overexpression of HOX-genes is a convergent oncogenic
pathway shared by these molecular subtypes of AML, the mechanism by which KMT2A-PTD induces high expression of the
HOX-genes remains unclear and may be distinct from that mediated by balanced KMT2A-translocations, and NPM1 muta-
tions.
We stipulated that analysis of commonmolecular features of KMT2A-PTDwill help identifyingmechanistic intersections point-
ing towards possible targeted therapies. In a total of 5420AML cases 1 including 793 cases frompublicly available sources (Beat
AML 2 and TCGA 3), we identi�ed 254 cases of KMT2A-PTD. Somatic mutational screening and karyotype analysis showed co-
occurrence with DNMT3A (31%), FLT3-ITD (32%), IDH1/2 (26%), RUNX1 (28%), TET2 (18%), SRSF2, STAG2, U2AF1 mutations
and deletion 5q. Strong leukemic initiators such as KMT2A-rearrangement, CBFB-MYH11, PML-RARA, RUNX1-RUNX1T1, tri-
somy 8 andNPM1mutations were mutually exclusive with KMT2A-PTD and did not rely on acquisition of additional mutations
linked to secondary AML ontogenesis ( e.g., ASXL1, RUNX1, SRSF2, and STAG2) different from KMT2A-PTD.
Next, we analyzed bulkmRNA-expression betweenmutually exclusiveKMT2A-PTD,KMT2A-rearranged orNPM1-mutant high
HOX-genes expressors. While several differentially expressed genes (DEG) between KMT2A-PTD and KMT2A-rearranged
cases were detected, there were few DEG between KMT2A-PTD andNPM1-mutated cases. Compared to KMT2A-rearrenged
cases, KMT2A-PTD had higher expression of CD34 and KIT in addition to some HOX-genes such as HOXB2 or NKX2-3. In
contrast, expression of CD1D, CD14, and immune checkpoint genes including LILRB4, CD276, CD86, and SIGLEC7 was much
higher in KMT2A-rearranged than KMT2A-PTD cases. These results prompted us to analyze the hematopoietic differentiation
status. For this purpose, we de�ned three gene signatures along the HOX-targeted genes axis, termed as HOX-primitive,
HOX-transient, and HOX-committed pro�les. Differentiation analysis revealed almost all of KMT2A-PTD cases could be sub-
classi�ed into HOX-transient stage while most of KMT2A-rearranged cases were HOX-committed. However, NPM1-mutated
cases were interspersed in all the differentiation stages along the HOX-axis. We therefore assumed that there were a few
DEG shared between KMT2A-PTD and NPM1-mutated cases as some NPM1-mutated AML clustered in the HOX-transient
expression pro�le group.
Intriguingly, DEG analysis was concordant with the hierarchical clustering based on the HOX-gens axis. Indeed, CD34 and
KIT were highly expressed in the HOX-transient cases, and CD1D and CD14 in the HOX-committed cases, consistent with the
enrichment of KMT2A-PTD and KMT2A-rearranged AML, respectively. We can conclude that the observed signatures were
unique to the HOX-stages rather than the molecular abnormalities such as KMT2A-PTD and KMT2A-rearrangements. For
example,CD34 upregulation was a feature shared transversally by all HOX-transient cases, including both KMT2A-rearranged
andNPM1-mutated cases. As shown in Figure, KMT2A-rearranged, KMT2A-PTD, andNPM1-mutated cases were more clearly
classi�ed in HOX-pro�les than molecular abnormalities. Additionally, among the cases which molecular subtypes were not
clear, those with high HOX-genes expression revealed higherMEN1 expression.
In conclusion, despite molecularly different, KMT2A-PTD, KMT2A-rearranged, and NPM1-mutated AML have similar expres-
sion patterns de�ned by each HOX differentiation stage. Like core binding factor AML such as RUNX1-RUNX1T1 and CBFB-
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MYH11, AML with higher expression of HOX-genes should be classi�ed in the same group, HOX-AML. Given the results
obtained with menin inhibitors in KMT2A-rearranged and NPM1-mutated AML, our �ndings open an opportunity for ex-
ploiting a therapeutic vulnerability in all HOX-AML including KMT2A-PTD AML or AML with high MEN1 expression. Since
HOX-AML highly express genes according to the HOX differentiation pro�le, stage-speci�c surface proteins coded by these
genes would be promising targets.
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